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Analytical expressions were derived for the vibrational distribution function in a system of an-
harmonic oscillators under conditions where the supply of vibrational energy considerably ex-
ceeded the equilibrium value, Distribution was found by considering the effect of vibrational—
vibrational and vibrational—translational energy exchange, as well as spontaneous radiative
transitions. Analytical expressions were also obtained for the relaxation rate of vibrational
energy. It was shown that where there is a strong deviation from equilibrium this rate can sig~
nificantly exceed the corresponding value for a model of harmonic oscillators and is deter-
mined by the probability of vibrational—vibrational exchange in the molecules.

In recent years, the vibrational relaxation of molecules patterned after anharmonic oscillators has
attracted considerable attention (see, e.g., [1]). The effect of anharmonicity on the vibrational distribution
function and energy relaxation rate can be very substantial, especially in strong disequilibrium where the
vibrational energy store greatly exceeds the equilibrium value. Such conditions occur in electric discharge,
exothermic chemical reactions, the escape of gases from holes and jets, and the effect of infrared reso-
nance radiation on the molecules, and are of practical interest in potential applications of radiation in in-
fluencing chemical reactions and studying the operative mechanisms of several molecular lasers (the CO
laser and hydrogen-halide lasers).

The distribution of vibrational level populations within an anharmonic-oscillator system was first
discovered for disequilibrium conditions by Treanor, Rich, and Rehm [2]. This equilibrium in real sys-
tems occurs only for low-level groups because it holds in the assumption that vibrational—vibrational en-
ergy exchange (V—V processes) is the sole molecular process involved. However, in view of the physical
problems mentioned above, it is of interest to know the distribution function for highly excited states, where
vibrational—translational energy exchange (V—T processes) and radiative fransitions (for emitting mole~
cules) begin to play an important role in the population of levels. In this case the vibrational distribution
function should be found from the solution of the nonlinear system made up of a large number of equations
for the balance of the populations. The accurate solution of such a system requires cumbersome numer-
ical calculations and has presently been done only for some concrete molecular gas mixtures with fixed
parametric values [3-9]. Approximate analytical expressions for the distribution function were found in
[10, 14]; however, only individual cases are described., Thus, the distribution function found in [10-12] de~
scribes only the case of a slight deviation in the value of the vibrational energy from the equilibrium value,
when nonresonance vibrational—vibrational exchange with lower-lying quanta plays a basic role in V=V
processes (i.e., in V—Vprocesses where highlyexcited molecules collide with molecules that occur at lower-
lying vibrational levels), In [13-14], the problem is considered in a diffusion approximation, anda continu-
ous vibrational energy spectrum is hypothesized. The distribution equations and functions derived in these
papers, while describing the conditions appropriate for a large store of vibrational energy, are neverthe-
less unsuitable for the practically important case of low gas temperatures T <E; (E; is the energy of a low-
energy vibrational quantum from the oscillator, expressed in °K).
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The concrete form of the distribution function is determined by the deviation of the molecular vibra-~
tional energy from the equilibrium value. In a system of anharmonic oscillators the relaxation rate of the
vibrational energy can differ significantly from the values supplied by the Landau—Teller theory for the
harmonic model. An accurate calculation of the relaxation rate, just as of the distribution function, is very
tedious and has been done up to now only for individual partial cases [3]and [4]. The analytical expressions
obtained in [15] are purely qualitative in nature and can be used practically only for the case of weak dis-
equilibrium,

1, VIBRATIONAL DISTRIBUTION FUNCTION

To find the distribution of populations of vibrational levels in conditions of disequilibrium we will,.
in accordance with [13, 14], use the diffusion approximation and assume a smooth variation in populations
during the transition from level to level. However, when deriving the equation from the appropriate vibra-
tional distribution function, we will start out from the ordinary system of balance equations in the popula-

tions Ny, of vibrational levels n:

dan, 1 1,
dtn =5 2 (071::11,'1;1 NmNn+]_ —_— Q:’;‘;LﬂmNmﬂNn) -
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Here N is the molecular density, Qi’jp’q is the probability in sec™! of vibrational —vibrational exchange
when, as a result of collisions of molecules situated at levels p and i, there occurs a transition at levels
g and j; P1 and A1 are the probabilities in sec™! of collisional and spontaneous radiative transition
i—~j; Fpis tLe term whlch describes the change in the population of the n-th level due to external effects;
and k is the general number of vibrational levels of the molecules. In writing out Eq. (1.1), account was
taken only of single-quantum transitions which ordinarily play a basic role in population levels,

Transferring Fp into the left side of Eq.(1.1) and summing with respect to n from 0 to i, we obtain
. dN,, 1 m, mi1 mH,m
2 ( - — Fn) = —A—,-Z Qitnt NNy — 0070 " NopalV3) + Pisy, iV — Piy iV + Ao, Vi (1.2)

=0

The physical concept of Eq. (1.2) is very simple: in energy space it determines the ordinary flow
of molecules through an arbitrary cross section between energy levels i+1 and i. The probabilities of
direct and reverse transitions in Eq. (1.1) and Eq. (1.2) are associated with the common relations

L™ = Qup ™ exp {—2AE (m — i) / T} 1.3)
Pi, i1 = Pi+1,'i exp {— (E1 -_ 2AEZ) / T} (1.4)
Here T is the gas temperature in °K, E; and AE are, respectively, the lower vibrational quantum of
the molecule and its anharmonicity in °K.

We will consider from now on the gas temperature as substantially less than characteristic(i.e.,
T <« E,) and be concerned with population levels i such that

E,—2AEi>T (1.5)
Furthermore, we will assume that exchange with vibrational quanta can affect the level populations
only in cases where the resonance defect 2AE (m ~i) is such that
2AE|m —i| LT (1.6)
If the populations slowly change with a variation in level number, then the term P1 i+1Nj in Eq. (1.2)

can be ignored when Eq. (1.5) is satisfied. We will also note that the condition (1.6) is not rigid and is
ordinarily :satisfied withina wide range of temperatures,

It is now convenient to pass from Eq. (1.2) to the diffusion approximation. Considering the conditions
as quasistationary for the sake of simplicity and that external disturbances take place only for the lowest
levels, it is possible to make the left side of Eq. (1.2) equal to zero. Then we introduce the continuous vibra-
tional distribution function f (i) such that

N:=Nf(i), Ny, =Nf@[ +dInf@i)/dil 1.m
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The writing of Eq, (1.7) presupposes a smooth variation in populations as one goes from level to level,
i.e., satisfyingthe relation

dlnf()/di<<1 (1.8)

Expanding the exponent in Eq. (1.3) into a series and substituting Eqs.(1.3) and (1,7) in Eq. (1.2), after
the replacement of summation with integration

§omm rem [ 200 — AL | 227 n— )]am + Puas i+ A, =0 (1.9)

di dm

The relation (1.9) is an integrodifferential equation for the vibrational distribution function f (i) in
quasistationary conditions and is valid when satisfying the relations (1.5), (1.6), and (1.8), i.e., under the
examined conditions where there is a strong deviation from equilibrium. The main difference of Eq. (1.9)
from analogous equations [13, 14] consists in the expression for the term which describes vibrational—
translational relaxation, because when it was written in Eq. (1.9), the relations (1.4), (1.5), and (1.8) were
taken into account, If one puts into Eq. (1.9) Py 43 j=Aj4+1 =0, then its solution is, as indeed should be
expected, a Treanor distribution function [2]:

fre = fo exp {—i (B/Ty — AE (i — 1)/T)},
Ty = Ey/In (fo/f1) (1.10)

where T, is the vibrational temperature of the first level, determined by the overall nonequilibrium store
of vibrational energy in the system.

To solve Eq. (1.9) it is necessary to know the probability dependence from the number of the vibra-
tional level., For simplicity we will in the following text basically use probabilities in which the anharmonic
effects are considered only when calculating exponential factors which give the most substantial dependence
on the energy and, consequently, on the anharmonicity AE, In this case we have

Qi = Quo (i + 1) (m -+ 1) e VVIE™l (37, 1, o~yyliomly
Piai= Py (i + 1) VT Ay s Ay (i + 1), (1.11)
dyy = (0.427/a) V WT AE

where u is the reduced mass of colliding particles in atomic units (amu); o is a constant in the exponential
potential of the intermolecular interaction in A-!, The expression is analogous for éy, although p and @
can be different if the V—T processes are determined by collisions with an extrinsic gas.

It is possible to obtain an analytical solution of Eq. (1.9), with consideration given to the last two sums,
only if several approximations are made, We will examine these approximations converting Eq. (1.9) into
the differential form,

We will first assume that collisions with molecules in lower vibrational states comprise the main
V=V processes for highly excited molecules, (This case is analogous to the one investigated in [10-12]
in a discrete approximation.) In this connection the basic contribution to the integral in Eq, (1.9) will be
made by terms with low m, Therefore, substituting the function (1.10) in place of f (m) as the zeroth ap-
proximation and integrating approximately, we obtain for 7 (i) the differential equation

1i~_[ﬂ_iﬂf‘; AE)_ 2 [E,
T a T + J 3fo \ 11

2 Pu Syysdypi | 4w syyi
T T 5 ——-6vv) [61%3 VARMA +Q_1°,e VV‘] (1.12)

10

This equation has the simple solution

; . Gyy+dyr)i .
N _ B AEG—=D \_ 2 [E1 2 [Pm(e —1) Ao Svi__ ]}
1@ = foexp{— it — SEC=I — (B 5 ]! | P sl g e (P} @ad)

It can be shown that fy®E,/T; occurs whenEgs.(1.12) and (1.13) are applicable, At lower levels due
to the small values of P;y/Qy, and A,¢/Qy,, expression (1.13) is, as one should expect, nearly the same as
Eq. (1.10), We will note that in distribution (1.13) at some values of the parameters T, Ty, Pyp, Qq,, and
A,, it is possible to have an absolutely inverse population of vibrational levels, This inversion can exist
only for states above the level which corresponds to the minimum in function (1,10). The number n* of
this level is

T o1 ,
r=amET T (1.14)
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It is necessary, however, o bear in mind that if the terms containing Py, and A, in Eq. (1.13) re-
main very much smaller than the first term in the exponent when i >n*, then Eq, (1.13) cannot be used to
figure out the distribution function. Actually, in this case, due to the important absolute inversion, the
populations at levels i >n* will be comparable to those in lower energy states, and the principal role in the
V—V processes will not be played by exchange with lower vibrational quanta [which was supposed in deduc-
ing Eq. (1.13)], but rather by the collision of two highly excited molecules with a low resonance defect in
the presence of quantum exchange, This situation ordinarily takes place in the strongest disequilibrium of
vibrational energy, i.e., at low gas temperatures and high values of T,.

Eq. (1.12) is invalid for the given case, and Eq. (1.9) can in any case be transformed to the differ-
ential form, taking into account that at low gas temperatures the parameter 5yy [see Eq. (1.11)] is such
that the probability of an exchange Q?ﬂ_sier ! hag a sharp maximum when m =i, This indicates that the
principal contribution to the integral in’Eq. (1.9) comes from the vicinity of point i where the function f{m)
can be expressed by f (i) using a power series expansion of (m—1i) [13]:

j 2
Jm) =10+ L0 m— ) 4 D e (1.15)

Substituting Eqs.(1.11) and (1.15) in Eq. (1.9) and integrating with respect to m, we obtain still one
more form of differential equation for the vibrational distribution function:

{7 (27— Tl Pa 0T A )7 =0 (1.16)

The approximate analytical solution of Eq. (1,16) for the levels i >n* can be obtained, assuming that
d® 1n f/di%2=const, A comparison with accurate numerical calculations shows that for a broad range of
parameters for T, Ty, Qqg, Pyg, and Ay, in the domain of i >n*, the best results are obtained if it is assumed

d?In f / di® ~ const =~ — 4AE/T (1.17)
Providing that Eq. (1.17) is true, the solution of Eq, (1.16) takes the form:

76) = ¢ _Po T613/V €5VTi . Awp TG?{’V
T i+1 T Qu 8ES,y -1 Op 3F6AE °

i>n' (1.18)

Following [13] we determine the integration constant C from the boundary condition at point i =n*:

f(@) = e7fpexp {~ n’ [—f{— — ("~ 1)—4#]} = foexp {— (') —ATE — %} (1.19)

In this connection, it can be assumed with good accuracy that the distribution function at levels of
i< n* takes the form of Eq. (1.10), It is only within the narrow vicinity of point n* when 1< n* that an ac-
curate solution of Eq. (1.16) will differ from Treanor's solution Eq. (1.10) and smoothly turn into Eq. (1.18),

Probabilities are often used in calculations besides Eq. (1.11), in which the anharmonic effects are
approximately accounted for, and in calculating preexponential factors. In this case the probabilities

m,m+H . < 1
Qi+1,i » Pj 41, 1» and A; +1,iin Eq. (1.11) must also be multiplied by the factors corresponding to

(1 =42 (1 =Sm) (1 =S50 (1 —%E—é)“(1 -5

Equations (1.12) and (1.16) are modified in a corresponding manner, and the solution, instead of Eq.
(1.18) assumes the form
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] 1 —(AE/E)i  Pw T8y, JSVT ( __AE, ) Ap T8y B _ 2AE .)H——(AE/El)i
fO=C"711T  ~ O m;,;"—,-;-rl T ') T Qo WAE BaE 1 Fy Tl =T (1.20)

It is apparent from the appearance of solutions (1,18) and (1.20) that they do not have any physical
meaning for the group of levels where f (i) <0, This limitation in the scope of the solution is connected
with the use of correlation (1.17) in the presence of the deduction of Eqs.(1.8) and (1.20), as well as with
the same equation (1.16) being true only for levels where Eq. (1.5) is satisfied, However, we will note that
the populations of levels for which Egs.(1.18)and (1.20) yield negative values of f (i) are very small and do
not contribute to the overall store of vibrational energy in disequilibrium,

Figures 1 and 2 compare the distribution functions for CO calculated according to Egs.(1.10), (1.19),
and (1.20) (solid lines) with the accurate calculations performed in [5] by the numerical solution of 80 bal-
ance equations for a CO +He mixture with an electron concentration of 2.5:10% em~3%, Curves 2, 3, and 4
in Fig. 1 correspond to the distribution function (0.2 mm Hg for CO +6 mm Hg for He) at a gas temperature
of 150, 175, and 200°K, while curve 1 is Treanor's distribution [2] at T,=1950°K, T =150°K, Curves 2, 3,

4, and 5 in Fig. 2 represent helium pressures of 6, 10, 20, and 50 mm Hg in a mixture at 0.2 mm Hg for
CO +p mm Hg for He at T =175°K, and curve 1 is Treanor's distribution at T;=2050°K, and T =175°K,

It is obvious from these figures that the fit for a large group of levels is excellent, The distribution
for levels i<n* is Treanor's equation (1,10), while for i > n* the absolute inversion of vibrational levels
does not arise, and the distribution has the shape of a slanting plateau, connected with the leading role of
the first term in Egs.(1.18) and (1,20). With an increase in i an even greater part is played by the second
term in Egs.(1.18) and (1,20), which causes in the final reckoning a sharp decrease in populations, Level
number n* *,which corresponds to this sharp inflection in the distribution function can be approximately
determined from the condition f (n* % =0, For nonradiating oscillators we have

HSvre o Qo Qu 3BAHSyp — SVTn*+

Q10 36AESyp n* 4 (o2 AE 1
Po 183, oz, " 1)f°exP{ ) __—} (1.21)

P TGVV T 2

A knowledge of the inflection point n* * is important in determining the relaxation rate in vibrational
energy under conditions of strong disequilibrium,

2, BELAXATION RATE OF VIBRATIONAL ENERGY

Multiplying Eg. (1.1) by n/N and summing up for all n, we obtain the equation for the rate of varia-
tion of an average store of quanta & per single molecule:
k

k .4 k
de 1 1 1 1
-d—t—:— N 2 Pn+1,nNn+1+'1—V—ZPn,n+1Nn z n+l, n n+1+ ann) 8=7V—
n=0

n==p n=0 n=n

nN, (2.1)

ing=

We will not concern ourselves in the future with the last term in Eq. (2.1), which describes energy
pumping to a vibrational degree of freedom by external actions, Instead, we will examine only the varia-
tion in the store of quanta due to vibrational—~translational energy exchange (the first two terms) and spon-
taneous radiative transitions (the third term),

For a harmonic oscillator, relation (2.1) after summation takes on the appearance of the Landau—
Teller equation. For low gas temperatures of T <« E, and large deviations from equilibrium in this case,
we have

de /| dt = — e/tg — A8, Ty = 1/Py, 2.2)

For the anharmonic oscillator when the probabilities are selected in the form of Eq. (1,11), the radi-
ative relaxation &, as may readily be seen from Eq,(2.1), does not depend on the form of the distribution
function and, as in the case of the harmonic model, is described by the second term in Eq. (2.2). Never-
theless, the rate of the vibrational—translational energy exchange can depend heavily on the form of the
vibrational distribution function and considerably exceed (up to several orders of magnitude) the value given
in Eq. (2.2). To find this relaxation rate, we will start out from the distribution function in Eqs.(1.10) and
(1.18), Turning in Eq. (2.1) from summation to integration and taking into account the relation (1,5), we
obtain

k e
T — P f)dim — Poo[§ VT )i + F0) (0°/8y) (VT — V™) (2.3)
0 0
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where fyp(i), n*, f(n*), and n* * are determined in Egs.(1.10), (1.14), (1.19), and (1.21), It was taken into

consideration when writing Eq. (2.3) that, according to what was said above, the populations at levels of
i>n** are small and do not affect the relaxation rate.

In order to represent the relaxation rate £ in the form of Eq. (2.2), we will also compute the value
1 " , n*. . - e .
8=T2nan S Lf(z)dzzgLfT,(l)di-{—f(n)(n —n") (2.4)
n=gp 0 0

1t is convenient to make further transformations associated with caleulating the integrals in Egs.(2.3)
and (2,4) for different values of the parameter

VAETT |n* —1 4 8yrT / (2AE) |

Ordinarily, this parameter is greater than unity. In this case f,~E,/T;, and the approximate integra-
tion in Eq. (2.4) yields

e = (I* 1 E) fo + f (n*) n* (n** — n¥)

(2.5)
Now calculating the integral in Eq. (2.3) and using Eq. (2.5), we obtain the general expression for the
relaxation rate:
de _ e
dt T Tug (2.6)
1 E -2 wg AE 1
?;—H—zpm{(Ti—b‘/T) +eXp{—(n)2T_—i—}X
T s e n* TR | s w AE 11771
X [W(i + Oyrn¥) LSVT Y, + _ﬁ%(equ‘ — VT )]} [fiT +n@m—n )exp{_ (n )2__T_ _ _2__}]

Figure 3 represents the calculation of values of T /7 oy carried out in accordance with Eq, (2.6) for
pure CO gas (curve 3) and a mixture of 3,2% CO +96.8% He (curves 1 and 2) for different parameters of T
and T (curve 1 — T,;=1850°K, curves 2 and 3 — T;=3000°K), It is evident that with a reduction in T/T; the

relaxation rate & for the anharmonic model with some moment will begin substantially to exceed the cor-
responding value for the harmonic model.

The expression (2.6) can be significantly simplified by examining the different relations that exist
between the supply of vibrational quanta at the levels where i=n* and n*=i=n** If T, and T are such
that all energy is basically concentrated at levels n* <=i=n** (the case of maximum deviation from equilib-
rium), then the first term in Eq. (2.5) and in the factors in Eq. (2.6) can be ignored, and for 7 Ay we have

Tar = Pi (&VT™ — &VT™) [dyr (0" — n !

(2.7)
When &y, (n** —n*)>>1, considering Eqs.(1.14) and (1.21) and assuming f,~E,/T,, we obtain
8 n#i
1 e’? —p B36AE E n* AE 1
Tam =P, o L e Q1 To%, T — e OXP {— (n*)z—q—n— — T} (2.8)

where n* and n* * are determined by expressions (1.14) and (1.21),

Equations (2.7) and (2.8) distinctly illustrate the fact that, where there is strong disequilibrium, the
vibrational—translational energy exchange in a system of anharmonic oscillators is realized principally
through levels near the level of n* *, where the populations are still comparatively large, and the prob-
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abilities are significantly [for level n* * by exp (éypn* *) times] over the corresponding values for the
harmonic model. It is also apparent from Eq. (2.8) that at the boundary the relaxation rate cannot be deter-
mined by the value of Py,, but rather by the probability of a vibrational energy exchange Qqy. It is explained
physically by the fact that with fast deactivation in the levels near n* * the transition rate of vibrational
energy converting to translational degrees of freedom is limited by the conversion rate of the molecules
at these levels, which produces the vibrational exchange. It is interesting to note that in this case the de-
pendence of T ogy on the gas temperature T can sharply differ from the conventional law T~exp {A/T! /3}
and is of a nonmonotonic nature, This fact is illustrated in Fig. 3 by the dependence of (7 AHQM)'“i (curve
4) on T/Ty, calculated for pure CO at T;=300°K. The dependence on gas pressure must also be singular,
Thus, in a gas mixture, where the probability Py, in the gas being studied is determined by collisions in
the extrinsic gas (e.g., intypical laser mixtures of CO +He), the time 7 AH might nevertheless not follow
the law of inverse proportionality of the dependence on concentration of this mixture and vary only slightly
[see Eq. (2.8)]. The dependence of 7 4y on the pressure of the extrinsic gas in strong disequilibrium is
illustrated in Fig. 4, which shows the dependences of (7 AHQN)'ionthe pressure of He in a mixture at 0.2
mm Hg for CO+p mm Hg for He, calculated with Ty =3000°K and at different temperatures T: 300°K (curve
1), 400°K (curve 2), and 500°K (curve 3), Expression (2,6) is also simplified in the case where the vibra-
tional energy is concentrated at low levels of i <n*, If a fundamental role is taken by the second term in
the right side of the relaxation equation (2.3), then we obtain for T AH
t E3 p |
Tap TP AE Syr

(VT — VI exp {—(n*)z-ATg - %} (2.9)
Finally, in the case where the vibrational—translational energy exchange occurs at levels of i =n*,
we have
1
TaH

~ Pu[(t—dvrg-) " + 2T L+ symmtyexp [~ e A2 6t} (2.10)

In many practical instances the second term in Eqg, (2.10) can be ignored. Then Eq. {2.10) will coin-
cide with the expression found in [15]. The relation (2.10) can be used to calculate the relaxation rate also
in the case where the distribution function has the form of Eq, (1.13).

We will note in conclusion that if the parameter v AE/T |n* —1—06ypT/(2AE) [<1, then practically all
energy will be concentrated at levels i >n*. Therefore, Egs.(2.7) and (2.8) can be used in this case to cal-
culate the relaxation rate, remembering however that f, is no longer equal to E;/Ty, but determined by the
relation

fo == [n*e= In (n** / n*)]-
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