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Analyt ical  exp re s s ions  were  der ived for  the v ibra t iona l  dis t r ibut ion function in a sy s t em of an-  
ha rmonic  osc i l l a to r s  under  conditions where the supply of v ibra t iona l  ene rgy  cons iderably  e x -  
ceeded the equi l ibr ium value.  Distr ibut ion was found by consider ing the effect  of v i b r a t i o n a l -  
v ibra t iona l  and v i b r a t i o n a l - t r a n s l a t i o n a l  ene rgy  exchange,  as well as spontaneous radia t ive  
t r ans i t ions .  Analyt ical  exp re s s ions  were  a lso  obtained for  the re laxat ion ra te  of v ibra t ional  
energy .  It was shown that where there  is a s t rong deviation f rom equi l ibr ium this  ra te  can s ig -  
nificantly exceed  the cor responding  value for  a model  of harmonic  osc i l l a to r s  and is d e t e r -  
mined by the probabi l i ty  of v i b r a t i o n a l - v i b r a t i o n a l  exchange in the molecu les .  

In recent  y e a r s ,  the v ibra t iona l  re laxat ion of molecu les  pa t te rned  a f t e r  anharmonic  osc i l l a to r s  has 
a t t r ac ted  cons iderable  attention (see, e .g. ,  [1]). The effect  of anharmonic i ty  on the v ibra t iona l  distr ibution 
function and energy  re laxat ion ra te  can be v e r y  substant ial ,  e spec ia l ly  in s t rong disequi l ibr ium where the 
v ibra t iona l  ene rgy  s tore  g rea t ly  exceeds  the equi l ibr ium value.  Such conditions occur  in e lec t r i c  d ischarge ,  
exo thermic  chemica l  reac t ions ,  the e scape  of gases  f rom holes and je ts ,  and the effect  of in f ra red  r e s o -  
nance radia t ion on the molecu les ,  and a re  of  p rac t i ca l  inte res t  in potential  appl icat ions of radiat ion in in-  
fluencing chemica l  reac t ions  and studying the opera t ive  m e c h a n i s m s  of s eve ra l  mo lecu l a r  l a s e r s  (the CO 
l a s e r  and hydrogen-hal ide  l a s e r s ) .  

The dis t r ibut ion of v ibra t iona l  level  populations within an a n h a r m o n i c - o s c i l l a t o r  sys t em was f i r s t  
d i scovered  for  disequi l ibr ium conditions by T reano r ,  Rich, and Rehm [2]. This  equi l ibr ium in r ea l  s y s -  
t e m s  occurs  only for  low-level  groups because  it holds in the assumpt ion  that v i b r a t i o n a l - v i b r a t i o n a l  en-  
e rgy  exchange ( V - V  p roces se s )  is the sole m o l e c u l a r  p roce s s  involved. However,  in view of the physica l  
p rob l ems  ment ioned above, it is of in te res t  to know the dis tr ibut ion hmction for  highly exci ted s ta tes ,  where 
v i b r a t i o n a l - t r a n s l a t i o n a l  energy  exchange ( V - T  p r o c e s s e s )  and radia t ive  t rans i t ions  (for emit t ing m o l e -  
cules) begin to play an impor tant  role  in the population of leve ls .  In this  case  the v ibra t iona l  distr ibution 
function should be found f rom the solution of the nonl inear  sy s t em made up of a la rge  number  of equations 
for  the balance of the populations.  The accura te  solution of such a s y s t e m  requ i re s  c u m b e r s o m e  n u m e r -  
ical  calculat ions and has p re sen t ly  been done only for  some concre te  m o l e c u l a r  gas m ix tu r e s  with fixed 
p a r a m e t r i c  values  [3-9]. Approximate  analyt ical  exp re s s ions  for  the dis tr ibut ion function were  found in 
[10, 14]; however,  only individual cases  a re  descr ibed .  Thus,  the dis tr ibut ion function found in [10-12] de-  
s c r i be s  only the case  of a slight deviation in the value of the v ibra t iona l  ene rgy  f rom the equi l ibr ium value,  
when nonresonance v i b r a t i o n a l - v i b r a t i o n a l  exchange with lower- ly ing  quanta plays a basic role in V - V  
p r o c e s s e s  (i.e., in V - V p r o c e s s e s  where  highlyexci ted molecu les  collide with molecu les  that occur  at l ower -  
lying v ibra t iona l  levels) .  In [13-14], the p rob lem is cons idered  in a diffusion approximat ion ,  andacon t inu -  
ous v ibra t iona l  energy  spec t rum is hypothesized.  The distr ibution equations and functions der ived in these  
pape r s ,  while descr ib ing  the conditions appropr ia te  for  a la rge  s to re  of  v ibra t iona l  energy,  a re  neve r the -  
l e s s  unsuitable for  the p rac t i ca l ly  impor tant  case  of  low gas t e m p e r a t u r e s  T <<E t (E l is the energy  of a low- 
energy  v ibra t iona l  quantum f rom the osc i l l a to r ,  e x p r e s s e d  in *K). 
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The concre te  form of the distr ibution function is de te rmined  by the deviation of the mo lecu l a r  v i b r a -  
t ional  energy  f rom the equi l ibr ium value.  In a sys t em of anharmonic  osc i l l a to rs  the re laxat ion ra te  of  the 
v ibra t ional  energy  can differ  significantly f rom the values supplied by the L a n d a u - T e l l e r  theory  for  the 
harmonic  model .  An accura te  calculat ion of the re laxat ion ra te ,  just  as of  the distr ibution function, is v e r y  
tedious and has been done up to now only for  individual pa r t i a l  ca ses  [3] and [4]. The analyt ical  expres s ions  
obtained in [15] a re  pure ly  qualitative in nature  and can be used  p rac t i ca l ly  only for  the case  of  weak d i s -  
equi l ibr ium.  

1 .  V I B R A T I O N A L  D I S T R I B U T I O N  F U N C T I O N  

To find the dis tr ibut ion of populations of  v ibra t ional  levels  in conditions of disequi l ibr ium we wil l ,  
in accordance  with [13, 14], use the diffusion approximat ion and assume  a smooth var ia t ion  in populations 
during the t rans i t ion  f rom level  to level .  However,  when der iving the equation f rom the appropr ia te  v i b r a -  
t ional  distr ibution function, we will s t a r t  out f rom the o rd inary  sys tem of balance equations in the popula-  
t ions N n of v ibra t iona l  levels  n: 

dNn I ~,~m,m+l N N m+Lm 
dt = --N-Zj(y~+I . . . .  +1 - -  Q,,,,~+x N=+IN,~) - -  

m 

m ,  m + l  t ~ ( O  . . . .  1 N . ~ N ~ - -  m+l,m On-l, ~ N,,,+INn-1) + (Pn+~, nN~+~ - -  
N 

m 

- -  P,,, ,~+xNn) - -  (P  . . . . .  1N~ - -  Pn-1, ,~N,~_~) + A ~+~, ,~N~+I - -  A,~N~ + F~, n = O, 1, 2 . . . . .  k (1.1) 

Here N is the mo lecu l a r  density,  Qi,jP,q is the probabi l i ty  in see -1 of  v i b r a t i o n a l - v i b r a t i o n a l  exchange 
when, as a resu l t  of col l is ions of molecu les  si tuated at levels  p and i, the re  occurs  a t rans i t ion  at levels  

nd j; Pi, j a n d  Ai, j a re  the probabi l i t ies  in see -1 of ooUisional and spontaneous radia t ive  t rans i t ion  
q 2 j ;  Fn is the t e r m  which desc r ibes  the change in the population of the n- th  level  due to ex te rna l  effects ;  
and k is the genera l  number  of v ibra t ional  levels  of the molecu les .  In wri t ing out Eq. (1.1), account was 
taken only of s ingle-quantum t rans i t ions  which ord inar i ly  play a basic role in population levels. 

T r a n s f e r r i n g  Fn into the left side of Eq. (1.1) and summing  with r e spec t  to n f rom 0 to i, we obtai~ 
i 

[ dNn ) t X~ ,~m ~+1N N .~+x,~ \ ~ - -  F. =~-s  ~ i + l - Q i ,  i+l N~+INi)+Pi+I,  iNi+I--P~,i+xN,+Ai+I,  IN,+I (1.2) 

The physical  concept  of Eq. (1.2) is ve ry  simple:  in energy  space it de te rmines  the o rd inary  flow 
of molecu les  through an a r b i t r a r y  c r o s s  sect ion between energy  levels  i + 1 and i. The probabi l i t ies  of 
d i rec t  and r e v e r s e  t rans i t ions  in Eq. (1.1) and Eq. (1.2) a re  assoc ia ted  with the common re la t ions  

Q r e + l ,  r~  /-} m ,  ~+I 
i ,  i + l  = "X~i+t, i exp {--2AE (m --  i) / T} (1.3) 

Pi, i+l ~-- Pi+l,i exp { -  (E x - -  2AEi) / T} (1.4) 

Here  T is the gas t e m p e r a t u r e  in ~ E l and AE are ,  respec t ive ly ,  the lower  v ibra t iona l  quantum of 
the molecule  and its anharmonic i ty  in "K. 

We will cons ider  f rom now on the gas t e m p e r a t u r e  as substant ia l ly  l ess  than cha rac t e r i s t i c  (i.e.,  
T <~ Ei) and be concerned with population levels  i such that 

E~ - -  2AEi  >~. T (1.5) 

F u r t h e r m o r e ,  we will a s s um e  that  exchange with v ibra t iona l  quanta can affect  the level  populations 
only in cases  where the resonance  defect 2 A E ( m - i )  is such that 

2 A E ] m - -  i[ ~ T (1.6) 

I f  the populations slowly change with a var ia t ion  in level  number ,  then the t e r m  Pi, i + 1Ni in Eq. (1.2) 
can be ignored when Eq. (1.5) is sat isf ied.  We will a lso note that the condition (1.6) is not r igid and is 
o rd inar i ly  ;sat isf ied within a wide range of t e m p e r a t u r e s .  

It  is now convenient to pass  f rom Eq. (1.2) to the diffusion approximat ion.  Consider ing the conditions 
as quas i s ta t ionary  for  the sake of s impl ic i ty  and that  ex te rna l  d is turbances  take place only for  the lowest 
levels ,  it is poss ible  to make the left side of Eq. (1.2) equal to ze ro .  Then we introduce the continuous v i b r a -  
t ional  dis t r ibut ion function f (i) such that  

N ,  = N / ( i ) ,  Ni+l = N / ( i )  [i + d In ] (i) / di] (1.7) 
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The wri t ing of Eq. (1.7) p re supposes  a smooth  var ia t ion  in populations as one goes f rom level  to level ,  
i .e . ,  sa t i s fy ing the  re la t ion  

d In [ (0 / di ~ l (1.8) 

Expanding the exponent in Eq. (1.3) into a s e r i e s  and substi tut ing Eqs.  (1.3)and (1.7) in Eq. (1.2), a f t e r  
the r ep lacement  of summat ion  with integrat ion 

Inm. m+x,,m, r dlnt(O dlnt(m) 2AE (m_O]dra..[_pi+x,i.F Ai+1,i 0 (1.9) 
~++1. + 1 ~ j L d~ dm "~  - " ' - T - -  = 

The re la t ion  (1.9) is an in tegrodif ferent ia l  equation for  the v ibra t iona l  distr ibution f u n c t i o n f  (i) in 
quas i s t a t iona ry  conditions and is valid when sat is fying the re la t ions  (1.5), (1.6), and (1.8), i .e. ,  under  the 
examined conditions where the re  is a s t rong deviation f rom equi l ibr ium.  The main  difference of Eq. (1.9) 
f rom analogous equations [13, 14] cons is t s  in the express ion  for  the t e r m  which desc r ibes  v i b r a t i o n a l -  
t r ans la t iona l  relaxat ion,  because  when it was wri t ten in Eq. (1.9), the re la t ions  (1.4), (1.5), and (1.8) were  
taken into account.  If  one puts into Eq. (1.9) Pi +1, i =Ai + l , i  =0, then i ts  solution is,  as  indeed should be 
expected,  a T r e a n o r  distr ibution function [2]: 

]Tr = ]o exp {--i (E1/T , - -  A E  (i - -  i)/T)}, 
T1 ~ El~In ([0/]1) (1.10) 

where  T t is the v ibra t iona l  t e m p e r a t u r e  of the f i r s t  level ,  de te rmined  by the ove ra l l  nonequil ibrium s tore  
of v ibra t iona l  energy  in the s y s t em .  

To solve Eq. (1.9) it is n e c e s s a r y  to know the probabi l i ty  dependence f rom the number  of the v i b r a -  
t ional  level .  For  s impl ic i ty  we will in the following text  bas ica l ly  use  probabi l i t ies  in which the anharmonic  
ef fec ts  a re  cons idered  only when calculat ing exponential  fac tors  which give the mos t  substant ia l  dependence 
on the energy  and, consequently,  on the anharmonic i ty  AE. In this case  we have 

• ,  m + l  0~+~,+ ~ Q~o (~ + i) (m § l) e -~vvl'-ml (3/2 - ~/~ e-SVVl i-ml) 

P++l , i~  Plo( i  + l ) e  ~vTi, Ai+l,+~Ato(i ? i), (1.11) 
a~v = (0.+27/~) V~-)Y AE 

where tt is the reduced m a s s  of colliding pa r t i c les  in a tomic units (amu); ~ is a constant  in the exponential  
potent ial  of the i n t e rmo lecu l a r  in terac t ion  in /~- l .  The express ion  is analogous for  6VT , although t~ and 
can be different  i f  the V - T  p r o c e s s e s  a re  de te rmined  by col l is ions with an ex t r ins ic  gas.  

It is poss ible  to obtain an analyt ical  solution of Eq. (1.9), with cons idera t ion  given to the last  two sums,  
only if s e v e r a l  approximat ions  a re  made .  We will examine these  approximat ions  conver t ing Eq. (1.9) into 
the di f ferent ia l  fo rm.  

We will f i r s t  a s sume  that  coll is ions with molecu les  in lower  v ibra t iona l  s ta tes  compr i s e  the main  
V - V  p r o c e s s e s  for  highly exci ted molecu les .  (This case is analogous to the one invest igated in [10-12] 
in a d i sc re te  approximation.)  In this connection the basic contr ibution to the in tegra l  in Eq. (1.9) will be 
made by t e r m s  with low m.  The re fo re ,  subst i tut ing the function (1.10) in place o f f ( m )  as the zero th  ap-  
p rox imat ion  and integrat ing approx imate ly ,  we obtain for  f ( i ) t h e  di f ferent ia l  equation 

] 

This equation has the s imple  solution 

(1.13) 

It  can be shown that f 0 ~ E l / T  t occurs  when Eqs.  (1.12)and (1.13) a re  applicable.  At lower  levels  due 
to the sma l l  values  of Pi0/Qi0 and A10/Ql0 , exp re s s ion  (1.13) is ,  as one should expect ,  nea r ly  the same  as 
Eq. (1.10). We will note that  in dis tr ibut ion (1.13) at some values  of the p a r a m e t e r s  T, T 1, Pl0, Qi0, and 
A10 it is poss ib le  to have an absolute ly  inverse  population of v ibra t iona l  levels .  This invers ion  can exis t  
only for  s ta tes  above the level  which co r r e sponds  to the min imum in function (1.10). The number  n* of 
this level  is 

E1 T t 
n* = ~ ~ -  + 7 (1.14) 
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It is n e c e s s a r y ,  however,  to bea r  in mind that if the t e r m s  containing P10 and A10 in Eq. (1.13) r e -  
main v e r y  much s m a l l e r  than the f i r s t  t e r m  in the exponent when i >n*,  then Eq. (1.13) cannot be used  to 
figure out the distr ibution function. Actually, in this case ,  due to the important  absolute inversion,  the 
populations at levels  i >n* will be comparab le  to those in lower  energy  s ta tes ,  and the pr incipal  role in the 
V - V  p r o c e s s e s  will not be played by exchange with lower  v ibra t ional  quanta [which was supposed in deduc-  
ing Eq. (1.13)], but r a t he r  by the coll is ion of two highly exci ted molecules  with a low resonance  defect in 
the p resence  of quantum exchange.  This si tuation ord inar i ly  takes  place in the s t ronges t  disequi l ibr ium of 
v ibra t iona l  energy ,  i .e. ,  at low gas t e m p e r a t u r e s  and high values  of T I. 

Eq. (1.12) is invalid for  the given case ,  and Eq. (1.9} can in any case  be t r a n s f o r m e d  to the d i f fe r -  
ential  fo rm,  taking into account that at low gas t e m p e r a t u r e s  the p a r a m e t e r  6VV [see Eq. (1.11)] is such 
that  the probabi l i ty  of an exchange Q ~ l  m +  2 has a sha rp  max imum when m = i .  This indicates that the 
pr inc ipa l  contribution to the in tegra l  in 'Eq.  (1.9} comes  f rom the vicini ty of point i where the fune t ionf (m)  
can be e x p r e s s e d  b y f  (i) using a power  s e r i e s  expansion of ( m -  i) [13]: 

/ (m) ~ / (i) _~- dJdi(i) (m - -  i) ~- 2i d~Jd~ ~ ( 0  (m - -  i) ~ -~- . . .  (1.15} 

Substituting Eqs.  (1.11) and (1.15) in Eq. (1.9) and integrat ing with r e spec t  to m,  we obtain st i l l  one 
m o r e  fo rm of different ia l  equation for  the v ibra t iona l  dis t r ibut ion function: 

3Q~o d { (2AE d~lnt)} 
5~ v d~ ( i+ t )~]2  T d~ + P l ~ 1 7 6  (1.i6) 

The approximate  analyt ical  solution of Eq. (1.16) for  the levels  i >n* can be obtained, assuming  that 
d 2 ln f / d i  2 =const .  A compar i son  with accura te  numer i ca l  calculat ions shows that for  a broad range of 
p a r a m e t e r s  for  T, Tj, Ql0, Pl0, and A10 in the domain of i.>n*, the best  r e su l t s  a re  obtained if it is a s sumed  

d ~ In ] / di s ~ const ~ - -  4AE/T  (1.17) 

Providing that  Eq. (1.17) is t rue ,  the solution of Eq. (1.16) takes  the form: 

C Plo T~V e svTi Alo T6~V 
/ ( i ) =  i + t  qzo 36AEfvT i + l  Qlo 36AE ' i > n *  (1.18) 

Following [13] we de te rmine  the integrat ion constant C f rom the boundary condition at point i =n* : 

E1 /(n*) = e-'/,/o exp {-- n" [Tq-1 --(n*-- I)~]} =/oexp {--(n') ~ ~ -- +} (1.19) 

In this connection, it can be a s sumed  with good accuracy  that  the distr ibution function at levels  of 
i< n* takes  the fo rm of Eq. 0.10}. It is only within the nar row vicini ty of point n* when 1 < n* that  an ac -  
cura te  solution of Eq. (1.16) will d i f fer  f rom TreanorYs solution Eq. (1.10) and smoothly turn  into Eq. 0 .18) .  

Probabi l i t ies  are  often used  in calculat ions besides  Eq. (1.11), in which the anharmonic  ef fec ts  a re  
a p p r o x i m ~ e l y  accounted for ,  and in calculat ing preexponent ia l  f ac to rs .  In this case  the probabi l i t ies  

m , m  +l 
Qi + 1, i , Pi + 1, i, and A i + 1, i in Eq. (1.11) mus t  also be mult ipl ied by the f ac to r s  cor responding  to 

- -  E,  / - - ' - E T  m)  ' - -  E, / ' - - ' - ' ~ - ~  / ~ - -  E~ / 

Equations (1.12} and (1.16} a r e  modified in a cor responding  manner ,  and the solution, instead of Eq. 
(1.18) a s s u m e s  the f o r m  
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/ (i) ---- C i + i qx0 36AESv T i + ~  ~ i -~- Qlo 36AE 8AE ~ ~ i -~ ~ , i >/ (1.20) 

It iS apparent  f rom the appearance  of solutions (1.18) and (1.20) that they do not laave any physica l  
meaning for  the group of levels  where f ( i )  < 0. This  l imi ta t ion in the scope of the solution is connected 
with the use  of co r r e l a t i on  (1.17) in the p r e sence  of the deduction of Eqs.  (1.8) and (1.20), as well as with 
the same  equation (1.16) being t rue  only for  levels  where Eq. (1.5) is sa t i s f ied .  However,  we will note that  
the populations of  levels  for  which Eqs.  (1.18) and (1.20) yield negative values  o f f ( i )  a re  v e r y  sma l l  and do 
not contr ibute to the ove ra l l  store of v ib ra t iona l  ene rgy  in d isequi l ibr ium.  

F igures  1 and 2 com pa re  the dis tr ibut ion functions for  CO calcula ted according  to Eqs.  (1.10), (1.19), 
and (1.20) (solid lines) with the accura te  calculat ions p e r f o r m e d  in [5] by the numer i ca l  solution of 80 ba l -  
ance equations fo r  a CO +He mix ture  with an e lec t ron  concentra t ion of 2 .5 .10  a cm -3. Curves  2, 3, and 4 
in Fig. 1 co r r e spond  to the dis tr ibut ion function (0.2 m m  Hg for  CO +6 m m  Hg for  He) at a gas t e m p e r a t u r e  
of  150, 175, and 200~K, while curve  1 is T r e a n o r , s  dis t r ibut ion [2] at T t =1950~I~, T =150~ Curves  2, 3, 
4, and 5 in Fig. 2 r e p r e s e n t  hel ium p r e s s u r e s  of 6, 10, 20, and 50 m m  Hg in a mix ture  at 0.2 m m  Hg for  
CO +p m m  Hg for  He at T =175~ and curve  1 is T r e a n o r ' s  distr ibution at T 1 =2050~K, and T =175~ 

It  is obvious f rom these  f igures  that  the fit for  a l a rge  group of levels  is excel lent .  The dis t r ibut ion 
for  levels  i <n* is T r e a n o r ' s  equation (1.10), while for  i > n* the absolute invers ion of v ibra t iona l  levels  
does not a r i s e ,  and the dis tr ibut ion has the shape of a slanting plateau,  connected with the leading role of 
the f i r s t  t e r m  in Eqs.  (1.18) and (1.20). With an inc rease  in i an even g r e a t e r  pa r t  is played by the second 
t e r m  in Eqs.  (1.18) and (1.20), which causes  in the final reckoning a sharp  dec rease  in populations.  Leve l  
n u m b e r  n* *, which co r r e sponds  to this sha rp  inflection in the dis tr ibut ion function can be approx imate ly  
de te rmined  f rom the condition f (n* *) = 0. For  nonradiat ing osc i l l a to r s  we have 

e ~VTn** = C  Qa0 36AESvT ~eSVTn * Q,o 36hE6VT { ,} 
Plo T6~V -~ Plo TS~V (n* + t)/o exp - -  (n*) 2 AET 2I (1.21) 

A knowledge of the inflection point n* * is important  in de te rmin ing  the re laxat ion  ra te  in v ibra t iona l  
energy  under  conditions of s t rong  disequi l ibr ium.  

2.  R E L A X A T I O N  R A T E  O F  V I B R A T I O N A L  E N E R G Y  

Multiplying Eq. (1.1) by n/N and summing  up for  all  n, we obtain the equation for  the ra te  of v a r i a -  
t ion of an ave rage  s tore  of quanta ~ p e r  single molecule .  

k /~ k k 
t 1 t i 

dtde _ NI 2 P,~+I,,~N,~+I + -if" E P,~, ,~+lN. - -  " ~  N A,~+I,,~N.+x + ~ N nF. ,  e = ~ N n N .  (2.1) 

We will not concern  ou r se lves  in the future with the last  t e r m  in Eq. (2.1), which desc r ibes  ene rgy  
pumping to a v ibra t iona l  degree  of f reedom by ex te rna l  act ions.  Instead,  we will examine only the v a r i a -  
t ion in the s tore  of quanta due to v i b r a t i o n a l - t r a n s l a t i o n a l  energy  exchange (the f i r s t  two t e r m s )  and spon-  
taneous radia t ive  t r ans i t ions  (the th i rd  t e r m ) .  

Fo r  a harmonic  osc i l l a to r ,  re la t ion  (2.1) a f t e r  summat ion  takes  on the appearance  of the L a n d a u -  
T e l l e r  equation. Fo r  low gas t e m p e r a t u r e s  of T << E 1 and large deviations f rom equi l ibr ium in th is  case ,  
we have 

de / dt = - -  e/~:H - -  Aloe, XH = t /Plo (2.2) 

For  the anharmonic  osc i l l a to r  when the probabi l i t ies  a re  se lec ted  in the fo rm of Eq. (1.11), the r a d i -  
at ive re laxat ion  e ,  as may  readi ly  be seen  f rom Eq, (2.1), does not depend on the fo rm of the dis tr ibut ion 
function and, as in the case  of the harmonic  model ,  is descr ibed  by the second t e r m  in Eq. (2.2). N e v e r -  
the less ,  the ra te  of the v i b r a t i o n a l - t r a n s l a t i o n a l  energy  exchange can depend heavi ly on the form of the 
v ibra t iona l  distr ibution function and cons iderab ly  exceed (up to s e v e r a l  o r d e r s  of magnitude) the value given 
in Eq. (2.2). To find this  re laxat ion  ra te ,  we will s t a r t  out f rom the distr ibution function in Eqs.  (1.10)and 
(1.18). Turning in Eq. (2.1) f rom summat ion  to integrat ion and taking into account the re la t ion (1.5), we 
obtain 

dedt ~ - -  P~o ol ie~VTi )r (i) di ~ - -  P~o [!  i esvTi /Tr(i)di "[- )t (n*) (n*./~VT) (e 8vT n** __ e~VT n* )] (2.3) 
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where fT r ( i ) ,  n*, f (n*), and n* * are  determined in Eqs. (1.10), (1.14), (1.19), and (1.21). It was taken into 
considerat ion when writing Eq. (2.3) that, according to what was said above, the populations at levels of 
i > n* * are small  and do not affect the relaxation rate .  

In o rder  to represent  the relaxation rate ~ in the form of Eq. (2.2), we will also compute the value 
n** n* 

1 
e = -~- ~ n N  n ~ f if (i) di ~ I i]rr (i) di + / (n*) (n** - -  n*) (2.4) 

n-~) 0 0 

It is convenient to make fur ther  t ransformat ions  
and (2.4) for different values of the pa rame te r  

) / 5 E /  T I n *  --  i 

Ordinari ly,  this pa rame te r  is g rea te r  than unity. 
tion in Eq. (2.4) yields 

associated with calculating the integrals in Eqs. (2.3) 

+ 8vTT / (2AE) [ 

In this case f o ~ E l / T l ,  and the approximate in tegra-  

8 ~ (T? / E?)/o  + / (n*) n* (n** - -  n*) (2.5) 

Now calculating the in tegra l  in Eq. (2.3) and using Eq. (2.5), we obtain the general  expression for the 
relaxation rate:  

d8 8 
dt  - -  ~Att (2.6) 

1 ~ P l o  - ~  - -6VT +exp  --(n*) ~ T 2 x 
TAH 

T X [ 2--~-~(t @6VT.*)eSVTn*+'/'-~ c +r , .  (,.. - ,.) o:p { -  (,'), 2 ) ]"  
uVT 

Figure 3 represents  the calculation of values of TH/~AH ca r r i ed  out in accordance with Eq. (2.6) for 
pure CO gas (curve 3) and a mixture of 3.2%CO +96.8%He (curves 1 and 2) for different pa ramete r s  of T 1 
and T (curve 1 - T 1 =1850~ curves  2 and 3 - T 1 =3000~ It is evident that with a reduction in TIT1 the 
relaxation rate ~ for the anharmonic model with some moment will begin substantially to exceed the co r -  
responding value for the harmonic model. 

The express ion (2.6) can be significantly simplified by examining the different relations that exist 
between the supply of vibrat ional  quanta at the levels where i -< n* and n* -<- i -< n* % If T 1 and T are  such 
that all energy is basically concentrated at levels n* -<- i -< n* * (the case of maximum deviation from equilib- 
rium), then the f i rs t  t e rm in Eq. (2.5) and in the factors  in Eq. (2.6) can be ignored: and for ~AH we have 

"r ]~  = Plo ( e ~vTn** - -  e svrn*) [6VT (rl,** - -  n*)] - I  (2.7) 

When 5VT, (n* * --n*) >> 1, considering Eqs. (1.14) and (1.21) and assumingf0~E1/T1 ,  we obtain 

e sVTn** 36AE El  n* { } 
1 N~.plo (n**-- ~'Qlo - -  n** n* egp --(n*) ~ AE 1 

"~AH 8VT n*) TS~. V Tx 7 T 2" (2.8) 

where n* and n** are determined by express ions  (1.14) and (1.21). 

Equations (2.7) and (2.8) distinctly i l lustrate the fact that, where there  is s t rong disequilibrium, the 
v ib ra t iona l - t r ans la t iona l  energy exchange in a system of anharmonic osci l la tors  is real ized principally 
through levels near  the level of n* *, where the populations are still  comparat ively  large,  and the prob-  
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abil i t ies are  significantly [for level  n* * by exp (SVTn* * ) t imes]  over  the corresponding values for  the 
harmonic model .  It is also apparent  f rom Eq, (2.8) that at the boundary the relaxat ion rate cannot be de t e r -  
mined by the value of Pi0, but r a t he r  by the probabil i ty of a vibrat ional  energy  exchange Q10. It is explained 
physical ly by the fact that with fast  deactivation in the levels  nea r  n* * the t rans i t ion rate of vibrat ional  
energy  convert ing to t rans la t ional  degrees  of f reedom is l imited by the conversion rate of the molecules  
at these levels ,  which produces the vibrat ional  exchange. It is in teres t ing  to note that in this case the de-  

,~ 1/3 pendence of ~'AH on the gas t empera tu re  T can sharply differ  f rom the conventional law ~- exp { A/T  ~} 
and is of a nonmonotonic nature .  This fact is i l lus t ra ted in Fig. 3 by the dependence of (rAHQ10) -1 (curve 
4) on T/T1,  calculated for  pure CO at T i =300~K. The dependence on gas p r e s su re  must  also be singular.  
Thus, in a gas mixture ,  where the probabil i ty Pro in the gas being studied is determined by coll is ions in 
the ext r ins ic  gas (e.g., in typical  l a se r  mix tures  of CO +He), the t ime ~AH might never the less  not follow 
the law of inverse  propor t ional i ty  of the dependence on concentrat ion of this mixture  and vary  only slightly 
[see Eq. (2~ The dependence of VAH on the p r e s su re  of the ext r ins ic  gas in s trong disequil ibrium is 
i l lus t ra ted  in Fig. 4, which shows the dependences of (~AHQl 0)-l on the p r e s su re  of He in a mixture  at 0.2 
mm Hg for  CO +p mm Hg for  He, calculated with T 1 =3000~ and at different t empera tu re s  T: 300~ 
1), 400~ (curve 2), and 500~ (curve 3)~ Express ion  (2.6) is also simplified in the case where the v ib ra -  
t ional energy  is concentra ted at low levels of i <n* .  If  a fundamental role is taken by the second t e r m  in 
the right side of the relaxat ion equation (2.3), then we obtain for  ~- AH 

YAH1 ~ P10 TI" Els ~ T  6VT' (e 8gTn** --  e 8"~'Tn*) exp {--(n*) 2 AET 2"i } (2.9) 

Finally, in the case where the v ib ra t i ona l - t r ans l a t i ona l  energy exchange occurs  at levels of i-<n*, 
we have 

- -  • / ) 1 0 T A  H i - -  UVT-'~I ] ~- + 5,Tn*) exp ~ -~- ~VTrt* (2.10) 

In many prac t ica l  instances the second t e r m  in Eq. (2.10) can be ignored. Then Eq. (2.10) will coin-  
cide with the express ion  found in [15]. The relat ion (2.10) can be used to calculate the relaxat ion rate also 
in the case where the distr ibution function has the form of Eq. (1.13). 

We will note in conclusion that if the p a r a m e t e r  ~ In* - -1 -6VTT/ (2AE)  [<1, then pract ica l ly  all 
energy  will be concentrated at levels  i > n*.  There fo re ,  Eqs. (2.7) and (2.8) can be used in this case  to ca l -  
culate the relaxat ion rate ,  r emember ing  however that f 0  is no longer equal to E l /T l ,  but determined by the 
relat ion 

/o ~ [n*e-'/~ in (n** / n*)] -1 
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